Rtkpost offsets? Problem with PPK with A6000 and latest firmware

Good afternoon. Iam having problems with the results of ppk with the latest edison firmware. My results seem to be ok but moved in x y and z axis in a constant value. Has anybody had this problem? My camera is Sony A6000, using a the hot shoe to time mark and my base station is a Topcon Hipre pro. The results with Samsung nx are perfect. But when I changed to A6000 with new firmware I found the mentioned problems. Thanks

Hi, do you have info on processing method and how your gear is configured?
We love screenshots

To get raw data from the aircraft on the plane I use this rtk settings:

Mode: Kinematic
Ticks on GLONNASS and GPS(default)
AR GLONNASS: ON

I log just raw data.

Base station is a Topcon Hiper pro. The results of Base Station Raw data are transformed into Rinex v3 with Topcon Tools.
Also the ubx file from reach is converted to Rinex v3.03.

Then I use Rtk post with this configuration:

rtkpost options (2017/04/12 13:29:44, v.2.4.3 Emlid b26)

pos1-posmode =kinematic # (0:single,1:dgps,2:kinematic,3:static,4:static-start,5:movingbase,6:fixed,7:ppp-kine,8:ppp-static,9:ppp-fixed)
pos1-frequency =l1 # (1:l1,2:l1+l2,3:l1+l2+l5,4:l1+l5)
pos1-soltype =combined # (0:forward,1:backward,2:combined)
pos1-elmask =5 # (deg)
pos1-snrmask_r =off # (0:off,1:on)
pos1-snrmask_b =off # (0:off,1:on)
pos1-snrmask_L1 =0,0,0,0,0,0,0,0,0
pos1-snrmask_L2 =0,0,0,0,0,0,0,0,0
pos1-snrmask_L5 =0,0,0,0,0,0,0,0,0
pos1-dynamics =on # (0:off,1:on)
pos1-tidecorr =off # (0:off,1:on,2:otl)
pos1-ionoopt =brdc # (0:off,1:brdc,2:sbas,3:dual-freq,4:est-stec,5:ionex-tec,6:qzs-brdc,7:qzs-lex,8:stec)
pos1-tropopt =saas # (0:off,1:saas,2:sbas,3:est-ztd,4:est-ztdgrad,5:ztd)
pos1-sateph =brdc # (0:brdc,1:precise,2:brdc+sbas,3:brdc+ssrapc,4:brdc+ssrcom)
pos1-posopt1 =off # (0:off,1:on)
pos1-posopt2 =off # (0:off,1:on)
pos1-posopt3 =off # (0:off,1:on,2:precise)
pos1-posopt4 =off # (0:off,1:on)
pos1-posopt5 =on # (0:off,1:on)
pos1-posopt6 =off # (0:off,1:on)
pos1-exclsats = # (prn …)
pos1-navsys =15 # (1:gps+2:sbas+4:glo+8:gal+16:qzs+32:comp)
pos2-armode =fix-and-hold # (0:off,1:continuous,2:instantaneous,3:fix-and-hold)
pos2-gloarmode =on # (0:off,1:on,2:autocal,3:fix-and-hold)
pos2-bdsarmode =on # (0:off,1:on)
pos2-arfilter =off # (0:off,1:on)
pos2-arthres =3
pos2-arthres1 =0.9999
pos2-arthres2 =0.25
pos2-arthres3 =0.1
pos2-arthres4 =0.05
pos2-arlockcnt =200
pos2-minfixsats =2
pos2-minholdsats =2
pos2-arelmask =0 # (deg)
pos2-arminfix =10
pos2-armaxiter =1
pos2-elmaskhold =0 # (deg)
pos2-aroutcnt =5
pos2-maxage =40 # (s)
pos2-syncsol =off # (0:off,1:on)
pos2-slipthres =0.05 # (m)
pos2-rejionno =30 # (m)
pos2-rejgdop =30
pos2-niter =1
pos2-baselen =0 # (m)
pos2-basesig =0 # (m)
out-solformat =llh # (0:llh,1:xyz,2:enu,3:nmea)
out-outhead =on # (0:off,1:on)
out-outopt =on # (0:off,1:on)
out-timesys =gpst # (0:gpst,1:utc,2:jst)
out-timeform =hms # (0:tow,1:hms)
out-timendec =3
out-degform =deg # (0:deg,1:dms)
out-fieldsep =
out-outsingle =off # (0:off,1:on)
out-maxsolstd =0 # (m)
out-height =ellipsoidal # (0:ellipsoidal,1:geodetic)
out-geoid =internal # (0:internal,1:egm96,2:egm08_2.5,3:egm08_1,4:gsi2000)
out-solstatic =all # (0:all,1:single)
out-nmeaintv1 =0 # (s)
out-nmeaintv2 =0 # (s)
out-outstat =off # (0:off,1:state,2:residual)
stats-eratio1 =100
stats-eratio2 =100
stats-errphase =0.003 # (m)
stats-errphaseel =0.003 # (m)
stats-errphasebl =0 # (m/10km)
stats-errdoppler =10 # (Hz)
stats-stdbias =30 # (m)
stats-stdiono =0.03 # (m)
stats-stdtrop =0.3 # (m)
stats-prnaccelh =10 # (m/s^2)
stats-prnaccelv =10 # (m/s^2)
stats-prnbias =0.0001 # (m)
stats-prniono =0.001 # (m)
stats-prntrop =0.0001 # (m)
stats-prnpos =0 # (m)
stats-clkstab =5e-12 # (s/s)
ant1-postype =llh # (0:llh,1:xyz,2:single,3:posfile,4:rinexhead,5:rtcm,6:raw)
ant1-pos1 =90 # (deg|m)
ant1-pos2 =0 # (deg|m)
ant1-pos3 =-6335367.6285 # (m|m)
ant1-anttype =
ant1-antdele =0 # (m)
ant1-antdeln =0 # (m)
ant1-antdelu =0 # (m)
ant2-postype =llh # (0:llh,1:xyz,2:single,3:posfile,4:rinexhead,5:rtcm,6:raw)
ant2-pos1 =37.5011807668789 # (deg|m)
ant2-pos2 =-6.24402990449757 # (deg|m)
ant2-pos3 =130.257 # (m|m)
ant2-anttype =
ant2-antdele =0 # (m)
ant2-antdeln =0 # (m)
ant2-antdelu =0 # (m)
ant2-maxaveep =0
ant2-initrst =off # (0:off,1:on)
misc-timeinterp =off # (0:off,1:on)
misc-sbasatsel =0 # (0:all)
misc-rnxopt1 =
misc-rnxopt2 =
misc-pppopt =
file-satantfile =
file-rcvantfile =
file-staposfile =
file-geoidfile =
file-ionofile =
file-dcbfile =
file-eopfile =
file-blqfile =
file-tempdir =
file-geexefile =
file-solstatfile =
file-tracefile =

With base other then Reach, Glonass AR should be off on rover. Not sure if this would affect the end result when working with raw file.

I agree with you. I was just checking that. I will see if this affects. Thanks for your help.

Would also try continuous mode.

Hi I would be interested in seeing your setup as we are looking to do the same thing. We have ordered the reach and will be looking to integrate it with our Pixhawk Multirotor. We are going to connect the Reach to the Sony Alpha camera via the hotshoe as we are only looking for positions at the photo centers. We will be using a Topcon GR5 as a base station and running the obs files through Trimble Business Center to process the PPK.
What sort of accuracies are you getting with the Reach, Topcon PPK combination ?

Regards
Steve

Below 5 cm